- 1. Find the following limit. (If the limit does not exist or has an infinite limit, you should point it out. In addition, also remember the definition of definite integral) (15%)
 - (a) $\lim_{n\to\infty} \ln(\frac{1}{n} \times \frac{2}{n} \dots \times \frac{n}{n})^{\frac{1}{n}}$
 - (b) $\lim_{x\to 0} \frac{1}{x} \int_0^x \cos(4t) dt$
 - (c) $\lim_{x\to 0} \cot(x) \frac{1}{x}$
 - (d) $\lim_{x\to 0} \frac{\arctan(\sin(2x))}{\tan(\arcsin(3x))}$
 - (e) $\lim_{x \to \infty} (1 + \frac{1}{x})^{4x}$

Notice $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Ans:

Theorem 5.17 (L'Hôpital's Rule)

Let f and g be functions that are differentiable on an open interval (a, b) containing c, except possibly at c itself. Assume that $g'(x) \neq 0$ for all x in (a, b), except possibly at c itself. If the limit of f(x)/g(x) as x approaches c produces the indeterminate form 0/0, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided the limit on the right exists (or is infinite). This result also applies if the limit of f(x)/g(x) as x approaches c produces anyone of the indeterminate forms ∞/∞ , $(-\infty)/\infty$, $\infty/(-\infty)$ or $(-\infty)/(-\infty)$.

(a)
$$\lim_{n \to \infty} \ln\left(\frac{1}{n} \times \frac{2}{n} \dots \times \frac{n}{n}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \ln\left(\frac{i}{n}\right) = \int_{0}^{1} \ln x \, dx$$

$$= \lim_{b \to 0^{+}} \int_{b}^{1} \ln x \, dx$$

$$= \lim_{b \to 0^{+}} \left(x \ln x \Big|_{b}^{1} - \int_{b}^{1} dx\right) = \lim_{b \to 0^{+}} \left(-b \ln b - (1-b)\right)$$

$$= -1 - \lim_{b \to 0^{+}} \frac{\ln b}{\frac{1}{b}} = -1 - \lim_{b \to 0^{+}} \frac{\frac{1}{b}}{\frac{-1}{b^{2}}} = -1$$

Definition 4.5 (Definite integral)

If f is defined on the closed interval [a,b] and the limit of Riemann sums over partitions Δ

$$\lim_{\|\Delta\|\to 0}\sum_{i=1}^n f(c_i)\Delta x_i$$

exists (as described above), then f is said to be integrable on [a, b] and the limit is denoted by

$$\lim_{\|\Delta\|\to 0} \sum_{i=1}^n f(c_i) \Delta x_i = \int_a^b f(x) \, \mathrm{d}x.$$

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration, and the number b is the upper limit of integration.

(b)
$$\lim_{x\to 0} \frac{1}{x} \int_0^x \cos(4t) dt = \lim_{x\to 0} \frac{\cos(4x)}{1} = 1$$

Theorem 3.4 (The Mean Value Theorem)

If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 4.11 (The Second Fundamental Theorem of Calculus)

If f is continuous on an open interval I containing a, then, for every x in the interval, $d \in f^{\times}$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\int_a^x f(t)\,\mathrm{d}t\right] = f(x).$$

(c)
$$\lim_{x \to 0} \cot(x) - \frac{1}{x} = \lim_{x \to 0} \frac{\cos(x)}{\sin(x)} - \frac{1}{x} = \lim_{x \to 0} \frac{x\cos(x) - \sin(x)}{x\sin(x)} = \lim_{x \to 0} \frac{\cos x - x\sin x - \cos x}{\sin x + x\cos x} = \lim_{x \to 0} \frac{\cos x}{\sin x} - \frac{\cos x}{\sin x} = \lim_{x \to 0} \frac{\cos(x)}{\sin(x)} - \frac{1}{x} = \lim_{x \to 0} \frac{\cos(x)}{\sin(x)}$$

 $\lim_{x \to 0} \frac{-x\cos x - \sin x}{\cos x + \cos x - x\sin x} = 0 \text{ (Indeterminate form } \infty - \infty)$

(d)
$$\lim_{x \to 0} \frac{\arctan(\sin(2x))}{\tan(\arcsin(3x))} = \lim_{x \to 0} \frac{\frac{1}{1 + \sin^2(2x)} \cos(2x)2}{\sec^2(\arcsin(3x)) \frac{1}{\sqrt{1 - (3x)^2}}} = \frac{2}{3}$$

(e)
$$\lim_{x \to \infty} (1 + \frac{1}{x})^{4x} = \lim_{x \to \infty} \left[(1 + \frac{1}{x})^x \right]^4 = e^4$$
 (Indeterminate form 1^{∞} , can take log)

Theorem 5.15 (A limit involving e)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x = e$$

2. Find the point a > 0 satisfying (8%)

$$\int_{1}^{a} \frac{2}{t} dt = \int_{a}^{\frac{1}{8}} \frac{1}{t} dt$$

Ans:

Applying the definition of the function ln x to the equation shows that

$$2(\ln a - \ln 1) = \ln \frac{1}{8} - \ln a$$
$$3 \ln a = \ln \frac{1}{8}$$
$$a^3 = \frac{1}{8} \rightarrow a = \frac{1}{2}$$

Definition 5.1 (The natural logarithmic function)

The natural logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, \mathrm{d}t, \quad x > 0.$$

The domain of the natural logarithmic function is the set of all positive real numbers.

3. Assume the inverse function of $f(x) = x^5 + 2x^3 + x - 2$ is g(x), find g'(f(1)) (5%)

Ans:

$$g(f(x)) = x$$

$$g'(f(x))f'(x) = 1$$

$$g'(f(x)) = \frac{1}{f'(x)} = \frac{1}{5x^4 + 6x^2 + 1}$$

$$g'(f(1)) = \frac{1}{12}$$

Theorem 5.7 (The existence of an inverse function)

- **1** A function has an inverse function if and only if it is one-to-one.
- ② If f is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

Definition 5.3 (Inverse function)

A function g is the inverse function of the function f if f(g(x)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f. The function g is denoted by f^{-1} (read "f inverse").

4. Evaluate. (12%)

(a)
$$\int_{\sqrt{3}}^{3} \frac{1}{x\sqrt{4x^2-9}} dx$$
?

(b)
$$\int \frac{2}{\sqrt{-x^2+4x}} dx$$

(c)
$$\int \frac{5^{2x}}{1+5^{2x}} dx$$

(d)
$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{\arcsin(\sqrt{x})}{\sqrt{x(1-x)}} dx$$

Ans: (a)
$$\int_{\sqrt{3}}^{3} \frac{1}{x\sqrt{4x^2-9}} dx = \left[\frac{1}{3} arcsec \frac{|2x|}{3}\right]_{\sqrt{3}}^{3} = \frac{1}{3} arcsec(2) - \frac{1}{3} arcsec \frac{2\sqrt{3}}{3} = \frac{1}{3} \left(\frac{\pi}{3}\right) - \frac{1}{3} arcsec(2) - \frac{1}{3} arcsec(3) - \frac{1}$$

$$\frac{1}{3} \left(\frac{\pi}{6} \right) = \frac{\pi}{18}$$

(b)
$$\int \frac{2}{\sqrt{-x^2+4x}} dx = \int \frac{2}{\sqrt{4-(x^2-4x+4)}} dx = \int \frac{2}{\sqrt{4-(x-2)^2}} dx = 2\arcsin\left(\frac{x-2}{2}\right) + C$$

Table 1: Integrals of the six basic trigonometric functions

$$\int \sin u \, du = -\cos u + C \qquad \int \cos u \, du = \sin u + C$$

$$\int \tan u \, du = -\ln|\cos u| + C \qquad \int \cot u \, du = \ln|\sin u| + C$$

$$\int \sec u \, du = \ln|\sec u + \tan u| + C \qquad \int \csc u \, du = -\ln|\csc u + \cot u| + C$$

Theorem 5.19 (Integrals involving inverse trigonometric functions)

Let u be a differentiable function of x, and let a > 0.

1.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$
2.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$
3.
$$\int \frac{du}{u\sqrt{u^2 - u^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$

(c) Let $u = 1 + 5^{2x}$, $du = 2(\ln 5)5^{2x} dx$

$$\int \frac{5^{2x}}{1+5^{2x}} dx = \frac{1}{2 \ln 5} \int \frac{1}{u} du = \frac{1}{2 \ln 5} \ln u + C = \frac{1}{2 \ln 5} \ln(1+5^{2x}) + C$$

Theorem 5.5 (Log Rule for integration)

Let u be a differentiable function of x.

1.
$$\int \frac{1}{x} dx = \ln|x| + C$$
 2. $\int \frac{1}{u} du = \ln|u| + C$

(d) Let
$$u = arcsin(\sqrt{x}), \frac{du}{dx} = \frac{1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}}$$

$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{\arcsin(\sqrt{x})}{\sqrt{x(1-x)}} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 2u du = u^2 \Big|_{\frac{\pi}{6}}^{\frac{\pi}{4}} = \frac{5\pi^2}{144}$$

5. Find the equation of the tangent line $y = log_{10}(3x)$ at x = 5. (5%) Ans:

$$y = \log_{10}(3x) = \log_{10} 3 + \frac{\ln x}{\ln 10}$$

 $y' = \frac{1}{x \ln 10}$ and the slope of the tangent line is $y'(5) = \frac{1}{5 \ln 10}$

Therefore, the tangent line is $y = \frac{1}{5 \ln 10} (x - 5) + \log_{10} 15$

Theorem 5.13 (Derivatives for bases other than e)

Let a be a positive real number ($a \neq 1$) and let u be a differentiable

1.
$$\frac{\mathrm{d}}{\mathrm{d}x}[a^x] = (\ln a)a^x$$

$$2. \ \frac{\mathrm{d}}{\mathrm{d}x} \left[a^{u} \right] = (\ln a) a^{u} \frac{\mathrm{d}u}{\mathrm{d}x}$$

function of x.
1.
$$\frac{d}{dx}[a^x] = (\ln a)a^x$$

3. $\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x}$

2.
$$\frac{\mathrm{d}}{\mathrm{d}x} [a^u] = (\ln a) a^u \frac{\mathrm{d}u}{\mathrm{d}x}$$

4. $\frac{\mathrm{d}}{\mathrm{d}x} [\log_a u] = \frac{1}{(\ln a)u} \frac{\mathrm{d}u}{\mathrm{d}x}$

- 6. Evaluate (16%)
 - (a) $\int (\ln x)^3 dx$
 - (b) $\int e^x \cos x \ dx$
 - (c) $\int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx$, where m and n are positive integers

(d)
$$\int_0^{\ln 4} \frac{e^x}{\sqrt{e^{2x}+9}} dx$$

Ans:

Theorem 8.1 (Integration by Parts)

If u and v are functions of x and have continuous derivatives, then

$$\int u\,\mathrm{d}v = uv - \int v\,\mathrm{d}u = uv - \int vu'\,\mathrm{d}x.$$

(a)

Let $u = (\ln x)^3$, $dv = dx \rightarrow du = 3(\ln x)^2 \frac{1}{x} dx$, v = x

$$\int (\ln x)^3 dx = x(\ln x)^3 - 3 \int (\ln x)^2 dx$$

Let $u = (\ln x)^2$, $dv = dx \rightarrow du = 2 \ln x \frac{1}{x} dx$, v = x

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2 \int \ln x \, dx$$

Let
$$u = \ln x$$
, $dv = dx \rightarrow du = \frac{1}{x} dx$, $v = x$

$$\int \ln x = x \ln x - \int dx = x \ln x - x + C$$

$$\int (\ln x)^3 dx = x (\ln x)^3 - 3 \int (\ln x)^2 dx$$

$$= x (\ln x)^3 - 3 \left(x (\ln x)^2 - 2 \int \ln x \, dx \right)$$

$$= x (\ln x)^3 - 3 (x (\ln x)^2 - 2 (x \ln x - x + C))$$

$$= x (\ln x)^3 - 3x (\ln x)^2 + 6x \ln x - 6x + C'$$

(b)
Let
$$u = \cos x$$
, $dv = e^x dx \rightarrow du = -\sin x \ dx$, $v = e^x$

$$\int e^x \cos x \ dx = e^x \cos x + \int e^x \sin x \ dx$$
Let $u = \sin x$, $dv = e^x dx \rightarrow du = \cos x \ dx$, $v = e^x$

$$\int e^x \cos x \ dx = e^x \cos x + \int e^x \sin x \ dx = e^x \cos x + \left(e^x \sin x - \int e^x \cos x \ dx\right)$$

$$\int e^x \cos x \ dx = \frac{1}{2} (e^x \cos x + e^x \sin x) + C$$

(c) $\int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx, \text{ where m and n are positive integers}$ If $m \neq n$, $\int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx = \frac{1}{2}\int_{-\pi}^{\pi} \sin((m+n)x) + \sin((m-n)x)dx = 0$ If m = n, $\int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx = \frac{1}{2}\int_{-\pi}^{\pi} \sin(2mx)dx = 0$

$$\sin mx \cos nx = \frac{1}{2}(\sin[(m-n)x] + \sin[(m+n)x])$$

 $\sin^2 x = \frac{1-\cos 2x}{2}$ and $\cos^2 x = \frac{1+\cos 2x}{2}$

(d)
$$\int_0^{\ln 4} \frac{e^x}{\sqrt{e^{2x}+9}} dx$$

(Let
$$u = e^x$$
, $du = e^x dx$)

$$=\int_1^4 \frac{du}{\sqrt{u^2+9}}$$

(Let $u = 3\tan\theta$, $du = 3sec^2\theta d\theta$)

$$= \int_{\arctan(\frac{1}{3})}^{\arctan(\frac{4}{3})} \sec\theta d\theta = \ln|\sec\theta + \tan\theta| | \arctan\left(\frac{4}{3}\right) = \ln\left(\frac{5}{3} + \frac{4}{3}\right) - \ln\left(\frac{\sqrt{10} + 1}{3}\right)$$
$$= 2\ln 3 - \ln(\sqrt{10} + 1)$$

For integrals involving $\sqrt{a^2-u^2}$, let $u=a\sin\theta$. Then $\sqrt{a^2-u^2}=a\cos\theta$, where $-\pi/2\leq\theta\leq\pi/2$.

For integrals involving $\sqrt{a^2+u^2}$, let $u=a\tan\theta$. Then $\sqrt{a^2+u^2}=a\sec\theta$, where $-\pi/2\leq\theta\leq\pi/2$.

For integrals involving $\sqrt{u^2 - a^2}$, let $u = a \sec \theta$.

Then $\sqrt{u^2 - a^2} = \begin{cases} a \tan \theta & \text{if } u > a \text{, where } 0 \le \theta < \pi/2 \\ -a \tan \theta, & \text{if } u < -a, \text{ where } \pi/2 < \theta \le \pi. \end{cases}$

7. Evaluate (16%)

(a)
$$\int \frac{sec^2(x)}{(tanx)(tanx+1)} dx$$

(b)
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$$

(c)
$$\int_{-\infty}^{0} xe^{x} dx$$

(d)
$$\int_0^3 \frac{1}{\sqrt[3]{x-1}} dx$$

Ans:

(a) Let
$$u = tanx$$
, $du = sec^2(x)dx$

$$\int \frac{\sec^2(x)}{(\tan x)(\tan x + 1)} dx = \int \frac{1}{(u)(u+1)} du$$

$$\frac{1}{(u)(u+1)} = \frac{A}{u} + \frac{B}{u+1},$$

$$1 = A(u+1) + Bu$$

When u = 0, A = 1

When u = 1, B = -1

$$\int \frac{\sec^2(x)}{(\tan x)(\tan x + 1)} dx = \int \frac{1}{(u)(u + 1)} du = \int \frac{1}{u} - \frac{1}{u + 1} du$$

$$= \ln|u| - \ln|u + 1| + C = \ln\left|\frac{u}{u + 1}\right| + C$$

$$= \ln\left|\frac{\tan x}{\tan x + 1}\right| + C$$

(b)

$$\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{4x}{x^3 - x^2 - x + 1}$$

$$\frac{4x}{x^3 - x^2 - x + 1} = \frac{4x}{(x - 1)^2(x + 1)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{(x + 1)}$$

$$4x = A(x - 1)(x + 1) + B(x + 1) + C(x - 1)^2$$

$$A = 1, B = 2, C = -1$$

$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx = \int (x + 1 + \frac{1}{x - 1} + \frac{2}{(x - 1)^2} + \frac{-1}{(x + 1)}) dx$$

$$= \frac{1}{2}x^2 + x + \ln|x - 1| - \frac{2}{x - 1} - \ln|x + 1| + C$$

3 Linear factors: For each factor of the form $(px + q)^m$, the partial fraction decomposition must include the following sum of m fractions.

$$\frac{A_1}{(px+q)} + \frac{A_2}{(px+q)^2} + \cdots + \frac{A_m}{(px+q)^m}$$

Quadratic factors: For each factor of the form $(ax^2 + bx + c)^n$, the partial fraction decomposition must include the following sum of n fractions.

$$\frac{B_1x + C_1}{ax^2 + bx + c} + \frac{B_2x + C_2}{(ax^2 + bx + c)^2} + \dots + \frac{B_nx + C_n}{(ax^2 + bx + c)^n}$$

$$\int_{-\infty}^{0} x e^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} x e^{x} dx = \lim_{a \to -\infty} ((x e^{x})|_{a}^{0} - \int_{a}^{0} e^{x} dx)$$

$$= \lim_{a \to -\infty} (-a e^{a} - 1 + e^{a}) = -\lim_{a \to -\infty} \left(\frac{a}{e^{-a}}\right) - 1$$

$$= -\lim_{a \to -\infty} \left(\frac{1}{-e^{-a}}\right) - 1 = \lim_{a \to -\infty} (e^{a}) - 1 = -1$$

$$\int_{0}^{3} \frac{1}{\sqrt[3]{x-1}} dx = \int_{0}^{1} \frac{1}{\sqrt[3]{x-1}} dx + \int_{1}^{3} \frac{1}{\sqrt[3]{x-1}} dx$$

$$= \lim_{b \to 1^{-}} \int_{0}^{b} \frac{1}{\sqrt[3]{x-1}} dx + \lim_{c \to 1^{+}} \int_{c}^{3} \frac{1}{\sqrt[3]{x-1}} dx$$

$$= \lim_{b \to 1^{-}} \frac{3}{2} (x-1)^{\frac{2}{3}} \Big|_{0}^{b} + \lim_{c \to 1^{+}} \frac{3}{2} (x-1)^{\frac{2}{3}} \Big|_{c}^{3} = \frac{-3}{2} + \frac{3\sqrt[3]{4}}{2}$$

Definition 8.1 (Improper integrals with infinite integration limits)

1 If f is continuous on the interval $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

② If f is continuous on the interval $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

3 If f is continuous on the interval $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

where c is any real number.

Definition 8.2 (Improper integrals with infinite discontinuities)

If f is continuous on the interval [a, b) and has an infinite discontinuity at b, then

$$\int_a^b f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx.$$

If f is continuous on the interval (a, b] and has an infinite discontinuity at a, then

$$\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx.$$

lacksquare If f is continuous on the interval [a,b], except for some c in (a,b) at which f has an infinite discontinuity, then

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x.$$

8. Determine whether the following integral diverges or converges (9%)

(a)
$$\int_0^1 \frac{1}{\sqrt[7]{x}} dx$$

(b)
$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$$

(c)
$$\int_1^\infty \frac{1}{\sqrt{x}} dx$$

Ans: (a) If p = 1, $\int_0^1 \frac{1}{x^p} dx = \int_0^1 \frac{1}{x} dx = \lim_{a \to 0^+} \ln x \Big|_a^1 = \infty$ diverges

If
$$p \neq 1$$
, $\int_0^1 \frac{1}{x^p} dx = \lim_{a \to 0^+} \frac{x^{1-p}}{1-p} \Big|_a^1 = \lim_{a \to 0^+} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \frac{1}{1-p} - \frac{1}{1-p} \lim_{a \to 0^+} a^{1-p}$

Which converges to $\frac{1}{1-p}$ if $1-p > 0 \leftrightarrow p < 1$

Therefore, $\int_0^1 \frac{1}{\sqrt[7]{x}} dx$ converges

(b) Since $\frac{1}{x^2} \ge \frac{\sin^2 x}{x^2} \ge 0$ on $[1, \infty)$ and $\int_1^\infty \frac{1}{x^2} dx$ is convergent.

 $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent by the comparison test

Theorem 8.7 (A special type of improper integral)

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \begin{cases} \frac{1}{p-1}, & \text{if } p > 1\\ \text{diverges}, & \text{if } p \leq 1 \end{cases}$$

(c) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ is divergent

Theorem 8.8 (Comparison Test for Improper Integrals)

Suppose the function f and g are continuous and $0 \le g(x) \le f(x)$ on the interval $[a,\infty)$. It can be shown that if $\int_a^\infty f(x) \, \mathrm{d}x$ converges, then $\int_a^\infty g(x) \, \mathrm{d}x$ also converges, and if $\int_a^\infty g(x) \, \mathrm{d}x$ diverges, then $\int_a^\infty f(x) \, \mathrm{d}x$ also diverges.

9. Find the area of the given region bounded by the graph y_1, y_2 and y_3 (6%)

$$y_1 = sinx, y_2 = cosx, y_3 = cosx + sinx$$

Ans:

$$A = \int_0^{\frac{\pi}{4}} (y_3 - y_2) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (y_3 - y_1) dx = \int_0^{\frac{\pi}{4}} \sin x \ dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \ dx$$
$$= -\cos x \left| \frac{\pi}{4} + \sin x \right|_0^{\frac{\pi}{2}} = 2 - \sqrt{2}$$

Area of a region between two curves

If f and g are continuous on [a,b] and $g(x) \leq f(x)$ for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x=a and x=b is

$$A = \int_a^b [f(x) - g(x)] dx.$$

10. Find the volume of the solid generated by revolving the region bounded by the graph of $f(x) = e^{-x}$ and the x-axis $(0 \le x \le \ln 2)$ about the line y = -1. (8%) **Ans:**

$$V = \pi \int_0^{\ln 2} (e^{-x} + 1)^2 dx - \pi \int_0^{\ln 2} 1^2 dx = \pi \int_0^{\ln 2} e^{-2x} + 2e^{-x} dx$$
$$= \pi \left(\frac{e^{-2x}}{-2} - 2e^{-x} \right) \Big|_0^{\ln 2} = \frac{11}{8} \pi$$

The Disk Method

To find the volume of a solid of revolution with the Disk Method, use one of the following, as shown in Figure 12.

Horizontal axis of revolution

Volume =
$$V$$
 = $\pi \int_{a}^{b} [R(x)]^{2} dx$

Vertical axis of revolution

Volume = V = $\pi \int_{c}^{d} [R(y)]^{2} dy$

Figure 11: Disk Method.